INTERLEAVED DC-DC CONVERTER BASED BLBUCKBOOST CONVERTER FED BLDC DRIVE
Keywords:
Bridgeless (BL), improved converter, brushless direct current (BLDC) motor, discontinuous inductor current mode (DICM), power quality.Abstract
In this paper an improved BL Buck-Boost PFC converter fed brushless direct current (BLDC) motor drive for desired speed applications has been presented. The additional inductance and power semiconductor switches gives the advantages over the conventional circuit configuration. The reliability of the circuit gets improved by proposed model. Voltage source inverter (VSI) is used to reduce the losses across the power switches. The performance of the proposed BLDC motor is evaluated over a wide range of speed control and observed in MATLAB/Simulation environment.
References
[1] C. L. Xia, Permanent Magnet Brushless DC Motor Drives and Controls. Hoboken, NJ, USA: Wiley, 2012.
[2] J. Moreno, M. E. Ortuzar, and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural
networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614–623, Apr. 2006.
[3] Y. Chen, C. Chiu, Y. Jhang, Z. Tang, and R. Liang, “A driver for the singlephase brushless dc fan motor with hybrid winding
structure,” IEEE Trans.Ind. Electron., vol. 60, no. 10, pp. 4369–4375, Oct. 2013.
[4] X. Huang, A. Goodman, C. Gerada, Y. Fang, and Q. Lu, “A single sided matrix converter drive for a brushless dc motor in aerospace
applications,” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3542–3552, Sep. 2012.
[5] H. A. Toliyat and S. Campbell, DSP-Based Electromechanical Motion Control. Boca Raton, FL, USA: CRC Press, 2004.
[6] P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 537–541,
Nov. 1988.
[7] Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A Per Phase), Int. Std. IEC 61000-3-2, 2000. BIST AND SINGH:
ADJUSTABLE-SPEED PFC BRIDGELESS BUCK–BOOST CONVERTER-FED BLDC MOTOR DRIVE 2677
[8] S. Singh and B. Singh, “A voltage-controlled PFC Cuk converter based PMBLDCM drive for air-conditioners,” IEEE Trans. Ind.
Appl., vol. 48, no. 2, pp. 832–838, Mar./Apr. 2012.
[9] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality
acdc converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962–981, Oct. 2003.
[10] B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, “Comprehensive study of single-phase ac-dc power factor corrected converters
with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540–556, Nov. 2011.
[11] S. Singh and B. Singh, “Power quality improved PMBLDCM drive for adjustable speed application with reduced sensor buck-boost
PFC converter,” in Proc. 4th ICETET, Nov. 18–20, 2011, pp. 180–184.
[12] T. Gopalarathnam and H. A. Toliyat, “A new topology for unipolar brushless dc motor drive with high power factor,” IEEE Trans.
Power Electron.,vol. 18, no. 6, pp. 1397–1404, Nov. 2003.
[13] Y. Jang and M. M. Jovanovi´c, “Bridgeless high-power-factor buck converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 602–
611, Feb. 2011.
[14] L. Huber, Y. Jang, and M. M. Jovanovi´c, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron.,
vol. 23, no. 3, pp. 1381–1390, May 2008.
[15] A. A. Fardoun, E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “New ‘real’ bridgeless high efficiency ac-dc converter,” in Proc. 27th
Annu. IEEE APEC Expo., Feb. 5–9, 2012, pp. 317–323.
[16] W. Wei, L. Hongpeng, J. Shigong, and X. Dianguo, “A novel bridgeless buck-boost PFC converter,” in IEEE PESC/IEEE Power
Electron. Spec. Conf., Jun. 15–19, 2008, pp. 1304–1308. [17] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “New
efficient bridgeless Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292–3301, Jul. 2012.
[17] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “A comparison between three proposed bridgeless Cuk rectifiers and
conventional topology for power factor correction,” in Proc. IEEE ICSET, Dec. 6–9, 2010, pp. 1–6.
[18] M. Mahdavi and H. Farzaneh-Fard, “Bridgeless CUK power factor correction rectifier with reduced conduction losses,” IET Power
Electron., vol. 5, no. 9, pp. 1733–1740, Nov. 2012.
[19] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Cuk PFC rectifiers with low
conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873–881, Mar./Apr. 2011.
[20] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC rectifier with reduced components and conduction losses,” IEEE Trans.
Ind. Electron., vol. 58, no. 9, pp. 4153–4160, Sep. 2011.
[21] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design. Hoboken, NJ, USA: Wiley,
2003.
[22] A. Emadi, A. Khaligh, Z. Nie, and Y. J. Lee, Integrated Power Electronic Converters and Digital Control. Boca Raton, FL, USA: CRC
Press, 2009.
[23] D. S. L. Simonetti, J. Sebastian, F. S. dos Reis, and J. Uceda, “Design criteria for SEPIC and Cuk converters as power factor preregulators in discontinuous conduction mode,” in Proc. Int. Electron. Motion Control Conf., 1992, vol. 1, pp. 283–288.
[24] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. Power Electron., vol.
11,
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Journal of Advance Research in Electrical & Electronics Engineering (ISSN 2208-2395)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.